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can analyze the transformation of the beam
by the medium. During the first half-period,
the size of the beam is given by (103) of
Kogelnik [10], and we have another expres-
sion for the radius of curvature of the wave-
front. In our experiment, wiI given by (99) of
Kogelnik [10], is equal to 0.65 mm when p is
maximum. An incoming beam, with a spot size
larger than wO, is contracted by the medium,
and we have a negative value for the radius of
curvature of the wavefront. During the sec-
ond half-period, we have an expression with
hyperbolic functions, and the eflect is always
defocusing.

For the stationary wave with q= 2, the
equivalent optical system is represented (Fig.
5) by a thin diverging lens of convergence
( –2,c) situated between two converging
lenses of convergence c. Input and output ray
slopes are shown as XI’ and x4’, respectively.
A half-wavelength of medium has a con-
vergence [1]: 2C= 3nOAlk2pM/2rvRT. The fac-
tor c, equal to or less than unity, is used to
take into account an asymmetry between the
compression and the rarefaction of the me-
dium, and a nonlinear variation of the index
of refraction with the pressure. The frequency
of this mode is given by

f= &[(~)’+ (y)’]:’ (4)

For our dimensions, this is equal to 14.7 kHz.
The ray matrix of the system is given by the
product of the matrices corresponding to each
lens defined by (30) of Kogelnik [10].
The convergence of the system is equal to
c1= 2c(1 —c)+lcZ —Pc3/2. During the second
half-period, we have a converging lens of con-
vergence 2ec situated between two diverging
lenses of convergence (–<). The system has
a converging effect: cz= 2c( 1—e)+1c2 +lzc3/2,
which is almost the value obtained during the
first half-period.

The value of the deflection can be ob-
tained by measuring the displacement of a
slot in front of the beam. The intensity of the
light going through the slot is represented by
equally spaced pulses. When we move the slot
toward the edge of the deflected beam, the
spacing between two pukes deereases, and
they coincide when the slot is situated at the
center of the maximum deflected beam. For
the mode (O, 1) with no longitudinal varia-
tion, we have measured an angle of 3.3 min-
utes between the converging and the diverg-
ing deflections, for an incoming beam situated
at 3 mm from the center of the cavity. A de-
flection of 23.4 minutes was obtained for the
mode (2, O) with no longitudinal variation
which has two diametral planes of zero pres-
sure. Near half the radius of the cavity, the
Bessel function of zero order has a linear
variation. Then the medium is equivalent to a
prism, and for the modes with no longitudinal
variation, the deflection is larger than near
the center of the cavity.

For the mode (O, 1) with two nodal planes
along the axis, the deflection is very small, and
for a position of the slot near the inflection
point of the Gaussian beam, we have an al-
most linear variation of the intensity with the
deflection. By measuring the displacement of
the slot, which gives the same variation, we
can measure the deflection. We obtain an
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Fig. 6. Deflection due to the mode (O, 1) with
no Iongitudmal variation.

Fig. 7. Output of the phototube for the deflection of a
beam near the center of the cavity, due to the mode
(O, 1) with no longitudinal variation.

Fig. S. Output of the phototube for the deflection of a
beam near the center of the cavity, due to the mode
(O, 1) with two nodal planes along the axis.

an angle of 2.9 seconds for an incoming beam
situated at 3 mm from the center of the cavity.
This value is 100 times larger than the calcu-
lated value with e= 1 and corresponds to an
asymmetry of 2.5 percent between the com-
pression and the rarefaction. A measurement
of the pressure along the axis and the diam-
eter of the cavity would have been useful to
determine whether the asymmetry actually
exists or whether other perturbations explain
the larger deflection than that expected.

Figure 6 shows the deflection obtained
from the (O, 1) mode with no longitudinal vari-
ation of pressure. This figure represents the
exposure of many cycles of the acoustic wave
in sweeping the beam back and forth on the
recording film. Figure 7 is a diRerent repre-

sentation of the deflection from this mode,
with the phototube response shown on the
oscillograph utilizing the slot method of de-
tecting small deflections as described previ-
ously. Figure 8 shows a representation similar
to that of Fig. 7 but for the mode (O, 1) with
two nodal planes along the axis. Note the
asymmetry of this picture which shows the net
converging effect.

The work reported shows the possibility of
obtaining appreciable deflection and focusing
with acoustic gas lenses, and the differences
between modes. The net focusing effect of the
alternating-gradient system is observed. Addi-
tional measurements should be made with
calibrated transducers in various places in
order to compare experimental values with the
calculated ones, and to determine the impor-
tant asymmetries of the alternating-gradient
system. Comparisons of liquid and gas acous-
tic lenses would also be desirable.
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The Resonant Frequency of Inter-

digital Filter Elements

In a recent correspondence Nicholson [1]
has described a method of predicting the cen-
ter frequency of a bandpass interdigital filter.
On the basis of existing techniques the design
of this type of filter usually results in an error
in the center and bandedge frequencies of the
filter. The most important reason for this is
the arbitrary manner in which the lengths of
the fingers (i.e., center conductor) must be
shortened at the open end [2]. By using

Manuscript received September 14, 1966; revised
January 16.1967.
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Nicholson’s method, it is possible to predict
fairly accurately the distance between the end
of the finger and the opposite end plate. The
improved accuracy follows from the proper
treatment given to the capacitances associated
with the end of the finger. Gandhi and
Khandelwal [3] and Khandelwal [4] have
shown that these capacitances can also be in-
cluded in the form of the effective length of a
conductor (finger) in transverse TEM struc-
tures with an arbitrary conductor cross sec-
tion. The interdigital structure is a special case
of the transverse TEM structures.

The purpose of this correspondence is to
indicate fi.rrther refinements which may be
added to the analysis of Nicholson. The
equivalent length concept is used and tech-
niques different from Nicholson’s are em-
ployed for the calculation of the total end ca-
pacitance. In his analysis, the total end capaci-
tance consists of the parallel plate capacitance
between the finger tip and the opposite end
plate, and the fringing capacitance between
the finger tip and the side plates. However, no
consideration has been given to:

1) The fringing capacitance between the
finger tip and the end plate,

2) The iuterconductor capacitance when
there is a given phase difference ~
(equal to T/2 fit the center frequency)
between the adjacent conductors,

3) The effect of the end plate on the fring-
ing capacitance, calculated as the dis-
continuity capacitance for the open-
circuited line from Nicholson’s Fig. 2;
and

4) The fact that the iuterconductor capaci-
tance is not contributed for a length x
shown in Fig. 1.

While the fist three effects increase the
end capacitance and, hence, decrease the cen-
ter frequency, the fourth tends to reduce the
“effective length” and, hence, increases the
center frequency of the filter.

In the case of geometrically simple finger
cross sections, such as those that are rectangu-
lar or circular, all of the above factors can be
accounted for without much difficulty. This is
due to the possibility of equivalent zero thick-
ness conductor representation [5] for simple
geometries. For other cross sections, signifi-
cantly more labor and additional approxima-
tions are involved. With regard to the inter-
conductor capacitance it should be noted
that most of it is contributed by the conduc-
tors in the immediate neighborhood of the
conductor under consideration and therefore
the effect of other conductors can be ne-
glected.

For the effective length calculation, define
COand Cr, the zero- and r-phase capacitances
[3], [4], as the total capacitance per unit
length of a conductor with respect to ground
when the phase difference between adjacent
conductors is zero and T, respectively. Then
the conductor capacitance per unit length to
ground for any phase difference @between the
adjacent conductors is given as

c~ = c, + +(C= – C,)(1 – Cos 0). (1)

Thus for the filter at its center frequency
where .$= r/2,

!5’./2 = w. + co).

H~-___-_.-’ pxgkF’!kl.F’!j%

L ---------- c~s

Fig. 1. Section of interdlsital filter structure
without top and bottom plates.

TOP PLATE
EQuIVALENT . —___________

./ L
F1.,~r- ‘=

1
\ BOTTOM PLATE \END p~~J’~

Fig. 2. Representation of a section of interdigital
structure for the evaluation of the fringing capaci-
tance associated with the conductor end.

This capacitance gives the filter characteristic
impedance as

Zo = v

[(cA/606J ‘
where q is the characteristic impedance of free
space. This impedance is usually chosen as
76 ohms for filter designs and optimum un-
loaded Q considerations. Thus for a total end
capacitance C~, the end capacitance equiva-
lent length is CJ(CTIJ.

To account for the situation at the shorted
end a knowledge of the interconductor ca-
pacitance is required. This capacitance, which
is zero for zero-phase difference between ad-
jacent conductors and 4C~ per unit length
for ~-phase difference between adjacent con-
ductors, will be 2C~ at the center frequency of
the filter. Cm is the mutual capacitance be-
tween adjacent conductors when there is a
~-phase difference between them. The equiva-
lent negative length corresponding to this
capacitance is

x .2cm
— .

Crl,

The “effective length” of the conductor can
be written as

X2C.
Lff=l +&–)

Cl,
(2)

.

where 1is the physical length of the conductor.
The center frequency of the filter can be de-
termined from the fact that the effective length
should be equal to h/4 at the center frequency.

To account for the fringing capacitance
between the conductor end and the opposite
end plate, Getsinger’s [6] 2CJ0’ (Fig. 2) can

be used rather than CP alone. Here this ca-
pacitance will be denoted by C.. Getsinger
gives this capacitance for rectangular conduc-
tors which for the present case will be valid
only when the conductor thickness is much
smaller than its width. For the circular con-
ductor case, Getsinger’s results can be used by
replacing the circular conductor by an equiva-
lent zero-thickness conductor of a width equal
to twice the diameter [5] (in the direction per-
pendicular to the plane of the paper). (In fact,
a circular conductor can be represented by an

ELEWRICAL WALL

j=fk==[

EQUI==R-<~- ‘----------ELECTRCAL WALL
OF THCKNESSI

Fig. 3. Interdlgital structure representation for evalua-

tion of the fringing capacitance between adjacent
conductors.

equivalent rectangular conductor with one
arbitrary dimension. The particular choice of
zero thickness allows the edge effects to be
neglected. It is for this reason that the use of
equivalent zero-thickness conductors is rec-
ommended even for rectangular conductors.)
The reasoning behind thk calculation is ap-
parent when a mirror image of the system
about the end plate which is then treated as an
electric wall is drawn (see Fig. 2).

The amount of fringing capacitance to the
top and bottom plates can also be determined
from the same geometry. This capacitance is
equivalent to that given by Getsinger for rec-
tangular conductors as Cf.’ and will be re-
ferred to here as Cfl.

Again the zero- and r-phase capacitances
approach will be used to account for the fring-
ing capacitance between the adjacent conduc-
tors. For this case, the equivalent zero-thick-
ness conductor will be placed perpendicular
to the top and bottom plates (see Fig. 3).
Clearly, the zero-phase capacitance in this case
is zero and, hence, the (~/2)-phase capacitance
Cf, is just half of the ~-phase capacitance which
in turn can be calculated from a knowledge of
Getsinger’s Cf.’ by assuming an electric wall
between the two adjacent conductors when
they have a ~-phase difference between them.

Two points are worth mentioning at this
stage. First, the approximation of putting the
electric wall midway between the adjacent
conductors is not quite correct in the region
between the finger end and the opposite wall,
and will result in a slightly higher capacitance
value. The exact location of the electric wall
and, hence, the true capacitance can however
be calculated from analog techniques. Second,
one might question the use of Cf.’ for the cal-
culation of these capacitances. However, this
use is correct because a knowledge of the vari-
ation of Cristal’s [7] mutual capacitance Cm
between adjacent conductors when the spac-
ing between the top and bottom ground
planes is varied suggests the analogous be-
havior of the end plate capacitance in this
case. The end plate thus reduces this fringing
capacitance from Getsinger’s Cf’, which is
0.44, for a zero-thickness conductor, to Cf.’
appropriate for this geometry. This leads to
an important conclusion that in evaluating
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the capacitance between two conductors, the
effect of a third conductor is the same as that
of a magnetic wall. However, there might be
some additional capacitance between each
conductor and the third one.

To demonstrate the use of the equivalent
length concept, let us take the case of Cristal’s
[7] filter which was originally designed for a
frequency of 1.5 GHz. Let us consider
Cristal’s resonators (fingers) 3 and 4 and their
center-to-center spacing as pitch p. For the
filter

(width

co = 4.560

C. = 5.372,,

Cmit = 4.93,, = 0.43684 pF/cm

Zo = 76.38 ohms

of equivalent zero thickness conduc-
tor) w = 0.43~ inch. For C.,

C/; = 0.514.0

Ce = 2wCf/ = 0.1012 pF.

For Cf,,

Cf,’ = 0.3516c,

Cfl = 2wC\o’ = 0.06927 PF.

For CJZ,

Cje’= 0.35060

wcfe’ = 0.03448 PF

C, = C, + C,, + C/, = 0.20495 pF.

The interconductor contribution to the
r-phase capacitance for the structure is
4Cn = 4(O.21O,J. Thus the effective length of
the conductor is

0.20495 (0.216) (2.54) (2CJ
le,f = 4.45 + E –

0.43684

= 4.87 cm

and the corresponding center frequency of the
filter is 1.54 GHz.

In conclusion, the present analysis gives a
frequency slightly less than that predicted by
Nicholson. However, better results will be
obtained if the positions of the electric walls
can be accurately evaluated, especially at the
shorted end of the conductor. The effective
length concept has been emphasized because
it can be conveniently used in other applica-
tions of such structures. Furthermore, it can
be easily improved upon by analog or rigorous
analytic techniques based on conformal trans-
formation methods.
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Simplifying Maxwell’s Equations

in Gyrotropic Media

The purpose of this correspondence is to
describe a method of handling Maxwell’s
equations in gyrotropic media. We have
found this method to be particularly useful in
the analysis of a small, ferrite filled wave-
gnide, but believe it may be useful in general.
The form of the equations appear to be con-
siderably less complicated and capable of af-
fording more insight than the methods em-
ployed in the literature [1 ]-[3]. We will make
use of a paif of oppositely rotating, elliptically
polarized vectors which, as is well known [4]
can be used to diagonalize parts of the per-
meability, permittivity, and conductivity
tensors. However, except in infinite media,
these polarized variables will not simplify
Maxwell’s eauations unless a new formulation
is used. ‘

For illustrative purposes, a gyromagnetic
medium will be considered. The medium is
taken to be magnetized in the z direction and
a Cartesian coordinate system assumed. The
time dependence and z variation are taken to
be e@’ and e-@s, respectively. Only the mag-
netic equation of motion (permeability ten-
sor) and Maxwell’s two curl equations are
required, as the divergence relations are re-
dundant.

Therefore,

b+ + b-
bs=—.

b+ _ b-

2’
bu=—

2j .

Similar definitions are used for: #, h+, e., ev,
h., k.. We shall define two operators of the
form

Note

V+v– = v–v+ = Vta

= transverse divergence gradient.1

MAGNETIC EQUATIONS OF MOTION

The exchange-free, Iossless, magnetic
equation of motion can be manipulated to
give the following set of equations [4]:

!l=l-$:‘:Yiii”

Changing to polarized variables:

& = ~+h+

b- = ~-h-

b. = ~Oh.

(1)

(2)

where:

co. = -&M.

m = yHDC

-Y = gyromagnetic ratio

4irM. = saturation magnetization

HDC = magnetic field present in gyro-
tropic medium

PO = permeability of free space.

MAXWSLL’S EQUATIONS

Due to the similarity of the curl equations,
it is convenient to perform parallel operations
as follows:

VXe=–jub

In matrix form

(3)

DEFINITIONS I Similar results can be obtained for cylindrical

Let
coordinates in either of two ways. The first is by

defining new variables like b+ =b,+-jb $ and V* =J/.3r

b* = b. ~ jbu. M 1lr)alJ@. with these definitions, the transverse
divergence gradient, Vtz becomes (l/r+V–)V+
=(1 /r+V+)V–. The second is by preserving the Car.

tesian definitions and simply transforming into cyliudri-
Manuscript received October 21, 1966. cal coordhates.


